Higgs Factories Session

Chris Tully Princeton

BNL Snowmass Energy Frontier Workshop
April 5, 2013

Higgs Physics in the Big Picture

- Will the detailed properties of the Higgs boson tell us more about the laws of physics?
 - What is the nature of dark matter?
 - Does dark matter interact with the Higgs boson?
 - Why is there a large-scale universe?
 - Are there symmetries or properties of space-time that made this possible and will such properties be discovered through the detailed study of the Higgs boson?

Major Challenges for Higgs Physics

- The LHC at 14 TeV will probe new physics at and above the TeV scale in a broad sweep
 - Beyond the LHC, the most promising avenue for future exploration is via the Higgs boson properties through high precision measurement.
 - What precision needs to be achieved to guarantee decisive and provocative answers to fundamental questions about the universe and the laws of physics?
- The Higgs boson and the top quark were guaranteed discoveries based on exactly this strategy
 - The basis for the high precision measurements came from the Z factories (over 10⁶ Z bosons produced on resonance and studied with polarized beams).

Higgs Factories

- The only two resonance production methods for the Higgs boson $(\mu^+\mu^-$ and $\gamma\gamma)$ involve technologies that we have not developed yet
 - But we do believe they will be developed eventually.
- The other directions for high precision Higgs studies involve accelerators that are themselves new energy frontier machines or in some way are designed to expand into new energy frontier machines
 - Since these are non-resonant processes, the Higgs boson measurements get most of their precision from their highest energy operation
 - By choosing these machine technologies we are effectively choosing the future direction of the energy frontier before having decisive constraints to guide us.
 - That might be the only answer, but it would choose between:
 - linear e⁺e⁻ up to 1 TeV or 3 TeV here there are two accelerator technologies
 - circular e⁺e⁻ up to 240 GeV (350 GeV) followed by pp at 33 TeV (100 TeV) where the 33 TeV program is HE-LHC in the existing LEP tunnel
 - And it should be noted that $\mu^+\mu^-$ could be extended up to 3 TeV
 - And that γγ could be included in a linear e⁺e⁻ energy frontier machine